Sliding Window Maximum
LeetCode #239
Description:
Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
Example:
For example,
Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.
Window position Max
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
Therefore, return the max sliding window as [3,3,5,5,6,7].
Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
Follow up:
Could you solve it in linear time?
Idea:
Time: O(n), space O(k)
用一个deque,这个思想同样可以用于sliding window minimum.
void inQueue(deque<int>& DQ, int num){
// change to DQ.back()>num, is for sliding window minimum
while(!DQ.empty() && DQ.back()<num){
DQ.pop_back();
}
DQ.push_back(num);
}
Code:
class Solution {
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
deque<int> DQ;
vector<int> result;
// 先弄k-1个
for(int i=0; i<k-1; ++i){
inQueue(DQ, nums[i]);
}
// 开始,先inQueue,再outQueue,中间存结果
for(int i=k-1; i<nums.size(); ++i){
inQueue(DQ, nums[i]);
result.push_back(DQ.front());
outQueue(DQ, nums[i-k+1]);
}
return result;
}
void inQueue(deque<int>& DQ, int num){
while(!DQ.empty() && DQ.back()<num){
DQ.pop_back();
}
DQ.push_back(num);
}
void outQueue(deque<int>& DQ, int num){
if(DQ.front()==num)
DQ.pop_front();
}
};