Best Time to Buy and Sell Stock IV
LeetCode #188
Description:
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most k transactions.
Note: You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
Example:
Note
Idea:
这里我们需要两个递推公式来分别更新两个变量mustsell和global,参见网友Code Ganker的博客,我们其实可以求至少k次交易的最大利润。我们定义mustsell[i][j]
为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,此为局部最优。然后我们定义global[i][j]
为在到达第i天时最多可进行j次交易的最大利润,此为全局最优。它们的递推式为:
diff = prices[i] - prices[i-1]
mustsell[i][j] = max(global[i - 1][j - 1] + diff, mustsell[i - 1][j] + diff)
global[i][j] = max(local[i][j], global[i - 1][j]),
mustsell[i - 1][j] + diff
就是在i-1天卖了又买,跟不动一个效果。
其中局部最优值是比较前一天并少交易一次的全局最优加上大于0的差值,和前一天的局部最优加上差值后相比,两者之中取较大值,而全局最优比较局部最优和前一天的全局最优。
但这道题还有个坑,就是如果k的值远大于prices的天数,比如k是好几百万,而prices的天数就为若干天的话,上面的DP解法就非常的没有效率,应该直接用Best Time to Buy and Sell Stock II 买股票的最佳时间之二的方法来求解,所以实际上这道题是之前的二和三的综合体,
Code:
class Solution {
public:
int maxProfit(int k, vector<int>& prices) {
if(k==0) return 0;
// if k is very large, 允许每两天买一次卖一次,就找出所有差价为positive的组合。
if(k>=prices.size()/2){
int profit=0;
for(int i=1; i<prices.size(); ++i){
if(prices[i]-prices[i-1]>0){
profit += prices[i]-prices[i-1];
}
}
return profit;
}
// if k not very large
int N=prices.size();
vector<vector<int>> mustsell(N, vector<int>(k, 0));
vector<vector<int>> global(N, vector<int>(k, 0));
for(int i=1; i<N; ++i){
int price_diff=prices[i]-prices[i-1];
for(int j=0; j<k; ++j){
mustsell[i][j]=std::max(global[i-1][j-1]+price_diff, mustsell[i-1][j]+price_diff);
global[i][j]=std::max(global[i-1][j], mustsell[i][j]);
}
}
return global[N-1][k-1];
}
};